If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-45x+40=(3x+1)(x-2)
We move all terms to the left:
5x^2-45x+40-((3x+1)(x-2))=0
We multiply parentheses ..
5x^2-((+3x^2-6x+x-2))-45x+40=0
We calculate terms in parentheses: -((+3x^2-6x+x-2)), so:We add all the numbers together, and all the variables
(+3x^2-6x+x-2)
We get rid of parentheses
3x^2-6x+x-2
We add all the numbers together, and all the variables
3x^2-5x-2
Back to the equation:
-(3x^2-5x-2)
5x^2-45x-(3x^2-5x-2)+40=0
We get rid of parentheses
5x^2-3x^2-45x+5x+2+40=0
We add all the numbers together, and all the variables
2x^2-40x+42=0
a = 2; b = -40; c = +42;
Δ = b2-4ac
Δ = -402-4·2·42
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{79}}{2*2}=\frac{40-4\sqrt{79}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{79}}{2*2}=\frac{40+4\sqrt{79}}{4} $
| 2^(2-3x)=64 | | 24(3n+7)=16 | | 3/x-1=4/2x+6 | | 23+3q=18 | | q÷13=13 | | .5=1.5x | | 6x+10+76=180 | | t-15=4 | | 80+x+25=180 | | 5.4(13.9r-5)=10 | | 457915X-30849,x=20430 | | x^2-2x-5=-x^2+x | | 10g=160 | | x^2+13x+42,5=0 | | 91583x-30849,x=20430 | | 2z/9+8=9 | | 3x+1+85=180 | | 3/7(-21x)=12 | | 87=-y/3 | | -2.2x+14.5=-27.3 | | -3p+12=6 | | x/10+3=-1 | | 9x-90+30*10x=0 | | z/7+6=9 | | 5(x-3)+8=14x-2 | | (4x+13)/(4-4x)=0.5 | | 7x-7÷3=9x-8÷7=11 | | 0.9x-8.75=21-0.86x | | (7x-1)^3=0 | | x-59.7=-100 | | 548=8x+274 | | 5v+8=68 |